An Investigation into the testing and commissioning requirements of IEC 61850 Station Bus Substations

Accendere, Robert Peter (2015) An Investigation into the testing and commissioning requirements of IEC 61850 Station Bus Substations. [USQ Project]

[img]
Preview
Text
Accendere_Ahfock.pdf

Download (4MB) | Preview

Abstract

The emergence of the new IEC 61850 standard generates a potential to deliver a safe, reliable and effective cost reduction in the way substations are designed and constructed. The IEC 61850 Station Bus systems architecture for a substation protection and automation system is based on a horizontal communication concept replicating what conventional copper wiring performed between Intelligent Electronic Devices (IED’s). The protection and control signals that are traditionally sent and received across a network of copper cables within the substation are now communicated over Ethernet based Local Area Networks (LAN) utilising Generic Object Oriented Substation Event (GOOSE) messages.

Implementing a station bus system generates a substantial change to existing design and construction practices. With this significant change, it is critical to develop a methodology for testing and commissioning of protection systems using GOOSE messaging. Analysing current design standards and philosophies established a connection between current conventional practices and future practices using GOOSE messaging at a station bus level. A potential design of the GOOSE messaging protection functions was implemented using the new technology hardware and software. Identification of potential deviations from the design intent, examination of their possible causes and assessment of their consequences was achieved using a Hazard and Operability study (HAZOP). This assessment identified the parts of the intended design that required validating or verifying through the testing and commissioning process. The introduction of a test coverage matrix was developed to identify and optimise the relevant elements, settings, parameters, functions, systems and characteristics that will require validating or verifying through inspection, testing, measurement or simulations during the testing and commissioning process. Research conducted identified hardware and software that would be utilised to validate or verify the IEC 61850 system through inspection, testing, measurement or simulations.

The Hazard and Operability study (HAZOP) has been identified as an effective, structured and systematic analysing process that will help identify what hardware, configurations, and functions that require testing and commissioning prior to placing a substation using IEC 61850 Station bus GOOSE messaging into service. This process enables power utilities to understand new challenges and develop testing and commissioning philosophies and quality assurance processes, while providing confidence that the IEC 61850 system will operate in a reliable, effective and secure manner.


Statistics for USQ ePrint 29147
Statistics for this ePrint Item
Item Type: USQ Project
Item Status: Live Archive
Additional Information: Bachelor of Power Engineering project.
Faculty/School / Institute/Centre: Historic - Faculty of Health, Engineering and Sciences - School of Mechanical and Electrical Engineering (1 Jul 2013 - 31 Dec 2021)
Supervisors: Ahfock, Tony; Coggan, Rob
Date Deposited: 25 May 2016 06:24
Last Modified: 06 Jun 2016 01:02
Uncontrolled Keywords: intelligent electronic devices; bus system;
Fields of Research (2008): 09 Engineering > 0906 Electrical and Electronic Engineering > 090607 Power and Energy Systems Engineering (excl. Renewable Power)
Fields of Research (2020): 40 ENGINEERING > 4008 Electrical engineering > 400805 Electrical energy transmission, networks and systems
URI: https://sear.unisq.edu.au/id/eprint/29147

Actions (login required)

View Item Archive Repository Staff Only